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Vertical ionization potentials, electron affinities and information about quasi-particles can be 
obtained by using the technique of the single-particle propagator. The expansion of the self-energy 
part up to third order perturbation theory can be evaluated numerically, but does not lead, in most 
cases, to satisfying results. A theoretical and numerical analysis of the diagrammatic expansion of the 
self-energy part requires the introduction of a renormalized interaction and renormalized hole and 
particle lines. 
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1. Introduction 

Many-body perturbation theories have been applied with success to nuclear 
structure [1], to high-density electron gas [2] and also to a wide range of other 
subjects as phonons, plasmons and superconductivity [3]. In addition, these 
theories have been also applied to atoms and molecules. In the case of atoms 
correlation energies [4, 5], dipole and quadrupole polarizabilities, shielding 
factors, transition probabilities [4], photodetachment  cross sections [6], Fermi 
contact terms [7], open-shell SCF orbitals [29] and ionization potentials [5, 8] 
have been calculated. In the case of molecules the correlation problem [9], natural 
orbitals [30] and ionization potentials [10-12] have been treated (non semi- 
empirical calculations). The application of a many-body perturbation theory to 
ionization potentials is more than just an alternative for the usual calculation 
of these quantities, since Koopmans '  defect [11], the difference between the 
ionization potential obtained by Koopmans '  theorem [13] and the exact one, is 
calculated directly without subtracting large numbers of nearly equal magnitude. 

In previous discussions in [ 14] and applications to atoms [5, 8] and molecules 
[ 10] the self-energy part  has been expanded up to second order. Extensive calcula- 
tions, however, have shown that, at least for small molecules, the expansion of the 
self-energy part  up to second order is far from being able to reproduce the ex- 
perimental results [-11, 12, 15]. Therefore, a more elaborate form of perturbation 
theory has to be derived which is done in the following sections. Quantitative 
results are discussed for the nitrogen molecule. Further calculations for F2, 
C2H2, HzO and HzCO are given in [15]. 

* Present Address: Physik-Department, Technische Universit~it Mtinchen, Deutschland. 
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2. General Theory 

In this section the general theory of Green's one-particle functions and of the 
self-energy part is discussed which is essential for the following sections. 

In the following text we use the occupation number formalism in which the 
operators ai and a~ + are the annihilation and the creation operators for a particle 
in the state [i) satisfying the anti-commutation relations 

[-ai, a~-]+=~)i j  , [-ai, a f ] + = [ - a + , a ] - ] +  = 0 ,  
(2.1) 

i = (i, a i ) .  

Let a system of N interacting fermions in the ground state be described by ~o N. 
In the Heisenberg representation the Green's one-particle function is defined by 

Gkk'(t, t') = -- i ( gJg l T (ak(t) a~, (t')} I ~ g ) ,  
(2.2) 

a,( t)  = e i m a k e - l m ,  ak - -  ak(0), 

T = Wick time-ordering operator. 
The spectral representation can be written as 

o0 

Gkk,(O0 = .[ Gkk,(t, t') ei~*-C) d ( t -  t') (2.3) 
- - o 0  

w~ ) (w~,-llaklwg) = y~ (~;~lakl~vT+l) @7+lla~,lWoN) + y~ (~ la~ , l  N-1 
l ~  l ~  

/1-+0 + 

where the relations 
i t  = E I N -  1) _ E~o N) 

At  = E~o N) - El N+ 1) 

hold 1. E~0 N) is the ground state energy of the N-electron system and El N- 1) and 
El N+I) the energy of a l-th state of the (N-1 ) -  and ( N +  1)-electron systems, 
respectively. Hence, the problem of calculating ionization potentials and electron 
affinities is equivalent to the problem of calculating the poles of the one-particle 
Green's functions. Putting the energies corresponding to the molecular geometry 
of the initial state for El N-l) and El N+I) the vertical ionization potentials (ViPs) 
and electron affinities (VEAs), respectively, are obtained. In order to compare 
them with the Franck-Condon maxima of the experimental ionization spectrum, 
they should be corrected for vibrational effects [-16]. 

The Green's one-particle function can be expanded in the time representation 
by means of a perturbation theory which is described in detail in 1-17-19]. It is 
therefore not considered here. It should be noted that, starting out from the 
equations of motion for the Green's n-particle functions, an infinite coupled set of 
equations results 1-20]. The uncoupling of this set of equations yields the same 
result as the perturbation expansion of the Green's functions. 

The perturbation series of the Green's function, however, does not have a form 
which allows the evaluation of its poles. On the other hand the Dyson equation in 

1 In order to simplify, the first ionization potential is denoted by I 0. 
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the co-representation 
G= G O + G~ G , 

G- 1 : G O - t _ 2; (2.4) 

is especially appropriate for this purpose. The poles of G correspond to the zeros 
of the eigenvalues of G-1. In Eq. (2.4) the quantity S,,, is the self-energy part and 
G~ is the free Green's function 

0 G~,k,(t, t') = - - i (~o[  T{ak(t) a+(t')} ] ~o) 

=6kk, e_ihk(t_t,){-- : t>t ' ,  k•{occ} 
t < t ' ,  k e {occ} 

(2.5) 

where ~b o is the ground state eigenfunction of Ho and {occ} is the set of the orbitals 
occupied in this state. 

For the above reason I; shall be considered in more detail: 
Let the Hamiltonian be given by 

H:Ho+Hw, 
H o = Z h i a~ ai, (2.6) 

Hw = �89 Z Vqk l a[- a f  a, ak 
where 

hi = (r h(1)l ~oi(1)), 
(2.7) 

V~jkZ = (q)i(1) (pj(2)] V(1, 2)1 q)k(1) (pZ(2)> 

are the matrix elements of the one-particle operator h and the two-particle 
operator V, respectively, and {~o,} is a complete set of one-particle wave functions. 
From the perturbation expansion of G and the Dyson equation we obtain the 
expansion of I2. The perturbation series of the Green's function and hence the 
expansion of the self-energy part is greatly simplified by the application of a well- 
known diagrammatic method. The following definitions hold: 

t}k �9 0 
- ~ G ~ k , ( t ,  t ' )  

t' k' 

I X  j~-iVij[kl]=-i(Vijkl-Vijlk)l (2.8) 

k 

The rules to draw the terms of a certain n-th order of the diagrammatic expansion 
of an element of I; are: 

(~l) The elements of each Graph are n V,-jrkq-points and ( 2 n - 1 )  G~ 
The elements of one kind can be connected only with elements of the other kind. 

(e2) Graphs, which split into two graphs by removing a single G~ do not 
belong to ~; according to the Dyson equation. 

(e3) All topologically not equivalent linked graphs with two free indices 
have to be drawn according to the rules (c~1) and (cd). 
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a b c 

Fig. 1. The graphs of the first (a) and second (b, c) order of the expansion of I; 

In Fig. 1 the first and second order of the expansion are reported as an example. 
The graphs which are obtained via (el)-(e3) by replacing the V~jEkn-points by 

the wiggle are called Feynman graphs. Any of the graphs treated here contains 
several Feynman graphs, e.g. 

(2.9) 

Except for the rules (fi6) and (/37), all the following rules for evaluation of diagrams 
are also valid for Feynman diagrams. 

(/31) Join the free indices k, k' of an n-th order diagram of the expansion of 
r--kk,(t, t') with a ei~ which shall be denoted by 

i t '  
e-i~(t'-t) ~ + 

t 

(/32) Draw the (n -1 )  horizontal lines . . . . . . .  between successive pairs of 
V-points according to: 

• 
- - o - - o - - o - - o - - e - -  

X 
- - o - - o - - o - - o - - o - -  ),( 

Any part of the diagram between two successive V-points is called a block. 
(/33) Each G~ and e-~(t'-t)-line cut by a horizontal line supplies an 

additive contribution to the denominator of the block, namely: 

. . . . . . .  yields the dominator 
~1 T I . . .  -+-~ -t-h'-t-'''' 

i j t 

i,j r {occ}, I s {occ}.  

(f14) Multiply the interactions Vi~tk q, the contributions of the blocks and a 
factor (-1)z'+z~; then sum over the internal indices (rl is the number of hole 
lines, ,~s is the number of loops). 

(flS) Each of the n! time ordered diagrams has to be evaluated separately. 
(f16) Each graphs has to be multiplied by 2 -q where q is the number of per- 

mutations of two G~ in the diagram leaving the diagram unchanged (identity 
transformation). 
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(fi7) The sign of the Vu~kq-points is not uniquely determined. The proper sign 
of the graph follows from a comparison with the sign of a Feynman graph which 
is contained in it. 

As an example the terms for the graph of the second order of the expansion of 
~,kk,(O,)) a r e  obtained with the help of these rules. 

1 Vks [fl] rk's[fll graph(b) = ~- ~ 
. . . .  3 co+h S - h  I -h~  

(2.10) 

0" 2 = {S E (OCC} ; f ,  l ~ {OCC}}, 0" 3 = {S ~ (OCC} ; f ,  1 ff {OCC}}. 

In the above perturbation theory the Hamiltonian of Eq. (2.6) has been used. 
Analogous results can also be obtained by choosing the perturbation Hw in a 
different way. In this work we choose now the Hartree-Fock operator 

HHF = S e i a~- ai , 

Hw=�89 alak--Z(l~cc}Viluzl)  a[-aj 
(2.1i) 

as the unperturbed operator Ho and the canonical HF-orbitals as the one-particle 
wave functions (Pl. The ei are here the HF-energies. Very important reasons for this 
choice are the availability of HF calculations and that the HF-energies of occupied 
orbitals of closed-shell systems provide relatively good approximations for the 
VIPs. The absence of bound excited (unoccupied) HF states, as might be the case 
for neutral atoms, leads to a slow convergence of the perturbation expansion [21 ]. 
The convergence of the expansion for correlation energies of atoms was greatly 
improved by using the V(N  - 1) potential of Kelly [4]. For closed-shell molecules, 
however, with many bound excited HF states we have no reason to assume a 
better convergence of the expansion of the self-energy part especially in calculating 
VIPs. 

A consequent use of the V(N  - 1) potential leads to a great expense for systems 
with many electrons since these excited states should be calculated in the potential 
field of N -  1 other electrons [22] and therefore this potential is different for 
different excited states. 

If the HF operator is taken to be H o then on account of the first term of Hw, 
graphs containing G~ t + 0)-lines need no more be considered [18]. This means 
that only h i has to be replaced by ~i in the expressions for the graphs and that, in 
addition, the number of graphs shrinks considerably. Graph (b) is the only remain- 
ing graph in Fig. 1, hence Koopmans' theorem is obtained in the first order of the 
expansion. As already mentioned in the introduction the expansion of the self- 
energy part up to the second order is in many cases far from being able to reproduce 
the experimental results. Therefore we have to use a more elaborate form of 
perturbation treatment. A general way to do so is to renormalize quantities as the 
interaction, vertex and particle- and hole-lines. An example for a renormalized 
interaction is given by the random phase approximation (see Section 4.1). By the 
renormalization of hole- and particle-lines a transformation of G~ into 
G-lines is understood. A graph, which is to be "dressed", is often referred to as 
"skeleton". By self-consistent perturbation theory we mean the self-consistent 
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solution of the equations 

where the symbol 

z = � 9  

t t+ I 
+ ... 

(2.12) 

, ~ k =-iGkk,(t,t') (2.13) 
t '  k '  

is used. 
In all renormalizations attention must be paid to overcounting. 
In the next section the pole strengths of the Green's functions are discussed 

and in Section 4 a self-energy part which is appropriate for calculating VIPs is 
derived. We use the nitrogen molecule as an example throughout this manuscript. 
Additional numerical calculations are given in [-12, 15, 23]. 

3. Restriction to Low Energy; Main and Secondary Poles 

In the following text some properties of the self-energy part which are essential 
for this work are mentioned. It should be noted that the self-energy part Z also 
has poles. The following notation will be used: the poles of graph (b) in Eq. (2.10) 
with the index set 0" 2 are denoted by Z + 1, z~ + 2 ,  " "  in the order of increasing energy 
and the poles with the index set 0"3 are denoted by Z_ 1, Z_ 2,... in the order of 
decreasing energy. The energy intervals (Z~, Z~+ 1), l:~ - 1 ,  will be denoted by the 
index l for l >  1, by l +  1 for l <  - 2  and the interval (Z-1, Z+I) b y / = 0 .  These 
definitions are illustrated in Fig. 2, where a schematic plot of Zu(a~) is given. 

In the picture of the Hartree-Fock quasiparticles the poles Z-k for k >  1 
correspond to processes in which one particle is separated and simultaneously 
another one is excited to an unoccupied orbital. In a similar manner the poles Zk 
for k > 1 are connected with processes in which one particle is added and another 
one excited. It can be shown that exactly one pole of the eigenvalue Du(~o) of the 
Green's function G is situated between any two successive poles of the self-energy 

~'-2 ~-I ~§ ~'§ ~§ 
Fig. 2. A schematic plot of X u for the definition of its poles 
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part [12, 24]. This statement is easily verified for the second order of the perturba- 
tion expansion with the help of Eq. (2.10) [12]. An essential consequence of this 
statement is, that the zeros of the eigenvalue D~ 1 Of G- 1 (co) which do not satisfy 
the conditions 

(Ok ~ ( ~ -  1, z~+ 1) , [(Dk-- ~_+ 1[ >~ 0 (3.1) 

have to be treated in a different way than the zeros which do satisfy these condi- 
tions. The present work deals only with such solutions k of the Dyson equation 
which satisfy the above conditions. The remaining VIPs and VEAs are treated 
elsewhere [12, 24]. A common theory for  all VIPs and VEAs is developed in [24] 
but it leads to a great numerical expense. 

A perturbation expansion of the Green's one-particle function gives informa- 
tion not only about the energy values of the VIPs and VEAs but also about the 
utility of the one-particle picture for ionization and particle addition processes. 
The desired information is provided by the pole strengths of the Green's function, 
which are considered in the following. First of all, some definitions: PkZ is the pole 
strength of the k-th eigenvalue Dk(co) of the Green's function matrix G to the pole 
in the interval l and aijkz is the pole strength of Gi~(co) to the same pole (k, l). 

Pkl = lim Dk(CO ) . (CO -- COkz), 

(3.2) 
aijkl = lim aij(CO ) �9 (CO - COkl), 

OO --+ r k. l 

COkl is the energy-coordinate of the pole and Sikl = S i k ( C O k l )  is an element of the 
eigenvector matrix S(CO) to the same pole. 

D -1 = S  + G - 1 S .  (3.3) 

By means of the Dyson equation one obtains directly for the pole strength 

(~Ok 1 
p~ 1 = 1 - ~ (Z + ")k (3.4) 

where A k means (S + A S)k k generally. 
In order to interpret the pole strengths one has to start out from their definition. 

By use of Eq. (2.3) one gets 

a i i k t  "= Pkl IS,k,I 2 = I ( ~ -  l fai ]~P~)12 , 

k~ {occ},l=0, - 1 ,  - 2 , . . . ,  

k r {occ}, I = - 1, - 2, . . . ,  (3.5) 

1 > auk I > O.  

I~p~ +1) and I ~  -1)  are true states of the ( N +  1)-particle system and ( N- 1 ) -  
particle system, respectively. 

Hence, auk t is the probability to find the state ail~p N) in the state I ~  1), that 
means the projection of a true state on a fictive one. The result of "removing" a 
HF-particle from the true ground state is described by ail~PoN), the true state after 
ionization is described by I ~ -  1). In case aUkl is not much less than 1, the "remov- 
ing" is nearly identical with the ionization. 
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Analogous conclusions are obtained for the pole strengths aiikt , where 

k~ {occ},l= 1,2, 3, . . . ,  

k ~ {occ}, l = 0, 1, . . . .  

One has only to replace ai by ai ~-, ~p~-1 by ~p~+l and "removing" by "addition". 
For the example of N2 we calculated the following pole strengths: 

P2*u, o = 0.87, 

P3~,,o = 0.91, 

Px~u,o =0.94. 

In order to compare those pole strengths of D with those of G we must know the 
values of Siu. 

All numerical results indicate that the eigenvectors of G associated with 
eigenvalues (Dkl which have pole strengths, PkZ, not much less than 1, may be 
approximated very well by unit vectors. This is mainly due to the fact that the 
inequality 

](ei + Su) - (~j + Zgg)[ >> IZij[, i # j  (3.6) 

is satisfied for all our examples. 
The eigenvectors of G were calculated for the example of N 2 with the self- 

energy part in second order and are compiled in Table 1. 
If the ionization is well described by the "removing" of a quasi-particle in the 

state k, then the corresponding Green's function in the range of the solution must 
show a similar form as the free function o . Gkk(a~). The self-energy part can be decom- 
posed into imaginary and real part for real values of ~o according to 

,y = ,yR + ,yi. (3.7) 

Table 1. Eigenvectors of G-  1 at co = ~0kO calculated with the self-energy part in second order for N 2. 
The basis-set used is described in [11] 

k 

Species 2a 0 2a,  in ,  3G o 1~ o 3G, 4cr 0 2~z, 

2% 0.9932 0 0 0.0346 0 0 0.0011 0 
20,, 0 0.9995 0 0 0 -0.0031 0 0 
1% 0 0 1.0000 0 0 0 0 0.0329 
3ag -0 .1146 0 0 0.9990 0 0 0.0069 0 
1% 0 0 0 0 1 0 0 0 
3au 0 -0.0121 0 0 0 0.9999 0 0 
4ag -0 .0025 0 0 0.0050 0 0 0.9980 0 
2n u 0 0 0.0038 0 0 0 0 0.9995 
5ag 0.0224 0 0 0.0265 0 0 0.0631 0 
4a.  0 0.0294 0 0 0 -0 .0146 0 0 
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Starting out from the Dyson equation and expanding (g+,r ,g )g  about 
COk~ =(8+  ~;R)kl~0~ , to the linear term and expanding S[ about mkZ to the constant 
term one obtains 

Pkl 
Dk(~0 ~ C0kl) = + At((O ~ C0kl ) 

co - -  Wkt + i z ~  1 
(3.8) 

.ck l p k t  , {+  1, --COg, =VIP  
- = " 1~k(COkt)" l, -- COkt = YEA 

where fkZ(CO) is a correction function for the higher orders of the expansion about 
COke. This expansion leads to the above result only if S is independent of 2; I for 
r/-+ 0 +. But this is true, because S has no poles in the open interval between two 
successive poles of I;. Hence, if fkl(~0 ~ C0k~ ) is unessential and Pk~"~ 1, then 
Dk(a) ~ c%) has the form of a quasi-particle propagator. The corresponding 
quasiparticle has a finite life time ZkV 

Equation (3.5) and the important relation 

aijk, = a,~, (3.9) 
k,l 

which is proved by removing the unit operators between the Heisenberg operators 
ak and a~, in Eq. (2.3), imply, that, if D k takes the form of a quasi-particle propa- 
gator, there is only one dominant pole strength, Pkl for each eigenvalue Dk of G. 
This pole shall be referred to as main pole, the remaining poles shall be called 
secondary poles. The properties of the secondary poles are treated extensively 
elsewhere [12, 24]. 

4. Inclusion of Higher Orders 

The expression for the graph of the second order of the expansion of the self- 
energy part has already been given as an example in Section 2. All numerical 
calculations for Ne, N2, F2, H20, C2H 2 and CO2 [11, 12, 15, 25] show uniquely 
that the expansion of the self-energy part to the second order does not at all 
suffice to evaluate the VIPs via the Dyson equation. As an example the VIPs of N2 
calculated with the self-energy part of second order are compiled in Table 2. 

For the above one cannot expect that taking in account the third order will be 
sufficientl An evaluation of additional orders turns out to be completely useless, 
as the number and the magnitude of the expressions go up explosively with the 

Table 2. Results for the three lowest ionizations of N z. R2 = VIP calculated with self-energy part in 
second order. RF = VIP calculated with the present theory. All energies in eV 

Species Exp. R 2 RF 
VlV [283 

2a, 18.78 17.00 18.59 
ln, 16.98 16.96 16.83 
3% 15.60 14.44 15.50 
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a b c 

Fig. 3. The graphs of third order of the expansion of 

t 
2 3 

7 8 

i 
5 6 

9 10 

11 12 13 

Fig. 4. The graphs of fourth order of the expansion of 

order of the expansion. The graph of the second order contains already 4 terms 
with 3 indices each. The graphs of the third order reported in Fig. 3 contain 
84 terms with 5 indices each. One notes, however, that these graphs can still be 
calculated numerically. The necessary numerical methods are described elsewhere 
[12, 15]. The graphs of the fourth order, reported in Fig. 4, contain already 3120 
expressions with 7 indices each. Therefore it is not possible to evaluate the total 
fourth order numerically. 
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One has to find out which graphs yield the important contributions, and then 
to calculate or, at least, to estimate these to infinite order. 

As a first step towards the solution of this problem it is reasonable to investigate 
the essential results of the solid-state physics and nuclear physics with respect to 
their application in atomic and molecular physics. 

4.1. A Short Comparison with Electron Gas and Nuclear Matter 

It is common in the treatment of metals to introduce a scaling parameter r s 
describing the volume per electron in an electron gas. It can be shown that, in 
the high-density case (rs-~ 0), the sum of the ring diagrams ("RPA") 

describes the self-energy part sufficiently well [26, 19]. With r 1 denoting the Bohr 
radius the volume per electron in the electron gas is 

4~ 
~ e = ~ - ( r s  �9 r l )  3 . (4.2) 

Let R, be the radius of the n-th Bohr orbit and Nef f the number of electrons 
considered, then from 

R n ,,~ n 2. r 1 - Z ~  (4.3) 

it follows that: 
7 -1  ~r- 1/3 (4.4) rsn~H2~ef f~,e f f  �9 

In regard of the inner electrons with Zer f >> 1 the relation r s ~ 1 follows from 
Eq. (4.4). Thus, it is reasonable to evaluate the correlation energy for such atoms 
by means of a model of a high-density non-uniform electron gas. Considering 
only the outer-shell electrons on the other side, one obtains, e.g. for phosphorus 
r s ~ 1.3. Therefore, the approximation of the self-energy part by ring diagrams 
does not work well in evaluating VIPs of atoms and especially not of molecules. 
It should be mentioned here that Brueckner [27] already tried to evaluate cor- 
relation energies of atoms with the help of a model of a high-density non-uniform 
electron gas. He obtained the important result that it has no sense to consider the 
atom as an uniform high-density electron gas and that the density gradient does 
not converge in the case of inhomogenity. 

For  the treatment of nuclear matter, however, circumstances are different. 
As before, it is also here common to introduce a parameter similar to r S. With a 
standing for the effective range of the interaction and r o standing for the average 
distance between the interacting particles one speaks of low-density, if ro/a ~> 1. 
Galitzki [26] showed that each hole line in a graph of the self-energy part is 
associated with a factor air o. The sum of the graphs containing only one hole line 
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which are called ladder graphs, dominates in the low density case. 

z /l) 
f / 

(4.5) 

Theoretical as well as numerical comparisons of 

and 

o 

(4.6) 

(4.7) 

show, however, that, for atoms and molecules, the contribution of the first 
mentioned graphs are comparable with those of the second mentioned graphs and, 
as a rule, even exceed them 1-12]. 

All these considerations lead to the result that atoms and molecules are located 
in the region between intermediate density and high-density, which means in a 
region, where it cannot be expected that just a few graphs dominate. This renders a 
reasonable evaluation of the self-energy part much more difficult. 

4.2. Antigraphs and Renormalized Interaction 

All graphs of third order and a number of graphs of fourth order have been 
evaluated for the systems Ne, N2, F2, H20  , CO2, C2H 2 and H2CO. The contribu- 
tions of some of these graphs were of the same order of magnitude as the contribu- 
tions of the graphs of second order. If we assume the convergence of the perturba- 
tion expansion, some of the graphs must compensate each other at least partly. 
This is confirmed by numerical results. The assumption that the contributions of 
the single graphs go down with increasing order of the expansion cannot be 
maintained. Hence, it is useless to consider as many graphs of a certain order of the 
expansion as possible without closer examination. It should be examined whether 
there exists a small "parameter" which gives us an idea how to select the important 
terms in the expansion of Z. In order to do so first of all some of the specific 
features of graphs of third order are considered in more detail. Each graph is split 
into its 6 time orders where the nomenclature given in Fig. 5 will be used. 
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A1 A2 A3 A4 A5 A6 

C1 C2 C3 C4 C5 C6 

D1 D2 D3 D4 D5 D6 

Fig. 5. The notation of the time ordered graphs of third order 

In the following only diagonal elements of the self-energy part of third and 
higher orders are considered (see Section 3). It is easily shown, that, for i=j the 
relations 

A3=A4, A5=A6, 
(4.8) 

X2 = X3, X4  = X5, X = C, D 

hold. There remain 12 different time ordered graphs. 
It is rather difficult to determine additional exact relations, if it is possible 

at all. Expressing the terms of the graphs C 1 - C6 and A 1 - A6 in an appropriate 
way facilitates relations as, e.g. 

ICll < Ic61 
A1, C 6 < 0  

A2, C1 > 0  

co ~ ek, k e {occ}  

for all k.  

(4.9) 

As one can see from the explicit expressions, it is difficult to build up relations for 
D 1 - D6 and between D and C graphs, as the D-graphs contain 8 expressions each, 
which cannot be collected as easily as for the C-graphs. Only simple relations like 

D1 <0 ,  D 6 > 0  co ,,~ e k (4.10) 

may be established [12]. 
In order to determine additional relations among the graphs we make the 

approximation that the most  important  contributions to I2 arise from one occupied 
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Table  3. The con t r ibu t ions  of the g raphs  of th i rd  order  for N 2 l eVI  a 

Orb.  A1 A2 2.A3 2.A5 C1 D1 2.C2 2.D2 2.C4 2.D4 C6 D6 

2cr, - 1 . 7 8  1.73 0.41 - 0 . 3 9  0.10 - 0 . 1 3  0.29 - 0 . 2 5  - 0 . 1 0  - 1 . 7 9  - 2 . 3 5  2.10 
3ag - 1 . 7 0  1.77 0.42 - 0 . 4 4  0.15 - 0 . 1 6  0.35 - 0 . 2 5  - 0 . 1 2  - 1 . 2 3  - 1 . 5 6  1.34 
In ,  - 1 . 8 0  1.77 0.44 - 0 . 4 1  0.32 - 0 . 3 0  0.77 - 0 . 6 4  - 0 . 0 8  - 0 . 1 1  - 0 . 6 1  0.65 
In  0 - 1 . 7 6  1.39 0.38 - 0 . 3 9  0.27 - 0 . 4 6  0.03 0.16 - 0 . 6 3  0.66 - 0 . 4 0  0.32 
3or, - 1 . 1 6  1.10 0.11 - 0 . 1 1  0.21 - 0 . 1 9  0.03 0.33 - 0 . 0 3  0.04 - 0 . 0 3  0.03 
4cr o - 1 . 3 5  1.27 0.17 - 0 . 1 7  0.29 - 0 . 2 7  0.02 0.36 - 0 . 0 3  0.04 - 0 . 0 2  0.02 
2~. - 1.52 1.40 0.22 - 0.23 0.54 - 0.68 0.18 0.07 - 0.05 0.07 - 0.04 0.04 
5~r o - 1.70 1.52 0.31 - 0 . 2 9  1.04 - 1.20 0.09 0.66 - 0 . 1 2  0.11 - 0 . 0 8  0.07 

- 1 = - 37.90 eV, X + 1 = 24.86 eV. 

Each g raph  has  been eva lua ted  at  co = m a i n  pole. 

orbital and one unoccupied orbital of suitable symmetry. With this approximation 
we deduce relations which are confirmed by a large number of numerical results. 
As well a b  i n i t i o  calculations for the above mentioned systems as semi-empirical 
HF-calculations for a larger number of molecules 1-25, 23-1 were available. The 
graphs of third order have been calculated in all these cases. As an example, the 
data of these graphs for the nitrogen molecule are compiled in Table 3. The 
numerical and theoretical results indicate that the following relations are valid: 

0 > A I ~  - A 2 , 0 <  C1 ~ - D 1  
(4.11) 

0 > C6,~ -D6 ,  A3,~ -A5 ,  

C 2 ~  - D 2  k e {occ} 

C 4 ~  - D 4  k r {occ} 
for 

e)  ~ O)ko , I~o - S, +_ ~ l >> O . 

Hence, there exist pairs of graphs distinguishing themselves by nearly compensat- 
ing each other. Such graphs shall be referred to as antigraphs. Although they do not 
completely compensate each other, both together have to be considered as one 
quantity in the perturbation theory. In third order there exist 5 different pairs of 
antigraphs. 

With Z} ") and g~') standing for a pair of antigraphs and an arbitrary graph of 
n-th order which is no antigraph, respectively, the self-energy part can be written: 

Su(e)) = Z rz~"f]i, + ~ L,k.r"(")]J,,. (4.12) 
jn,n kn,n 

Both time ordered diagrams of the self-energy part of second order may be 
considered as antigraphs, too, since 

hold. 
60 ~ (Dk0 

< 0 (4.13) 
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This pair of antigraphs of second order, ;~(2), is essential for most orbitals and 

I [Z(12)],1 >> I[z~s)],l, s = 1, 2, 3, 4, 5 (4.14) 

is valid for these orbitals, which indicates that the first sum converges quickly 
and can be estimated quite well by summing up to third order. Therefore, if the 
graphs of third order are calculated explicitly, then only graphs {g(k")}, for n > 4, 
have to be considered. We try to take account of the essential contributions of 
these graphs by introducing a time dependent effective interaction and re- 
normalized hole- and particle-lines. The renormalized interaction shall be 
symbolized by ~ = - -  i V e f f ( t  , t ' )  . (4.15) 

This renormalized interaction contains all graphs beginning with two free indices 
at the time t' and ending with two free indices at the time t :  

{} {3 l+ ,4,6, = X + + �89 + -~ ... 

In this equation the factor of rule (//6) in Section 2 is explicitly put in front of the 
graph. 

It is evident, that the renormalized interaction satisfies the recurrence formula 

.•(n) + 1 ' ~ (n -1 )  
- -  •215 

(4.17) 

Numerical results prove that the calculation of Vef r by use of Eq. (4.17) converges 
slowly. It is useless, for this reason, just to evaluate a few orders and it is, therefore, 
necessary to estimate the rest. 

Substituting the interaction by the renormalized one and paying attention to 
repetitions of graphs one gets in second order 

g - - - -~-  = ~- = g 1 ~ ... (4.18) + + ~  + 

All o-dependent graphs of third order as well as the graphs (1) and (2) in Fig. 4 
are contained in the renormalized graph of second order. 

Analogously 

= g + +~- P+... (4.19) 
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By use of the antigraph hypothesis one obtains 

1 I'-zln q + + 
2" + "~ ~ ,  Z L %Jii ie{occ} n=2 Sn=l 

+ + 

for the renormalized graph. It means, that graphs which arise from the graphs of 
third order which are not antigraphs are considered. 

For ir an analogous expression results [12]. It must be observed, 
however, that the error of the estimation arises in the fourth order, because all 
~o-dependent graphs of third order are considered explicitly in Eq. (4.20). 

All drawn graphs on the right hand side of Eq. (4.20) are of the type g~. These 
graphs have been numerically evaluated for all above examples and provide 
extremely large contributions [12, 15]. 

In the following we want to try to evaluate the renormalized graph of second 
order. 

First, we have to make use of the fact that the following series are equal: 

+ + �9 
(4.21) 

F l,, + 
analogously 

ii ii 
(4.21a) 

E , I :  + [{  +-.. 
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In crude approximation these series may be estimated by geometric series. The 
quotient of the first two terms of the series in Eq. (4.21) and the series in Eq. (4.21a) 
shall be referred to as ql ~) and ql b), respectively. 

ql2~ = + (4.22) 

i i  

ql bl = + (4.22a) 

i i  ii 

In order to estimate the renormalized graph in Eq. (4.20) the graphs 

@ (4.23) 

are left, which give only small contributions to the examples considered. But this 
must be checked for each new example. 

For the example of N 2 the quotients q(") and q(b) are: 

q~) = -0.89, ~(a) -0.99, q~) = -0.87 

q(b) -- 0.30, q(xb)~, = -- 0.50, q(3b)~, = -- 0.33 
2 o -  u ~ 

This means that, as C4 yields only a small contribution, the contribution of the 
effective interaction is approximately given by the terms of second order and the 
half of 2. D4. 

The graph of second order is the first graph of the expansion, which depends 
on co. The constant graph C in Fig. 3 is the first graph which does not depend on co. 
Renormalizing this graph according to Eq. (4.19) one obtains in fourth order the 
co-dependent graphs + + 4 4  

These graphs have a special meaning which is explained in the next section. 
The graphs in Eq. (4.19) which do not depend on co, are not of importance 

unless the corresponding antigraph relations in Eq. (4.11) are not satisfied suf- 
ficiently (Appendix A). 

4.3. Self-Consistent Perturbation Theory 

In Section 4.2 a renormalization of the interaction has been described. Numeri- 
cal calculations show that the obtained results for VIPs are largely improved by 
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considering the renormalization. For further improvement we also consider the 
renormalization of hole- and particle-lines. The renormalization of the "skeleton" 
~)  is reduced to the HF-problem by use of Eq. (2.11) with 

~ ,  = ~ - ~ (~  (4.25) 

If we choose but the self-energy part of second order for a skeleton for the self- 
consistent perturbation theory, the calculation contains the graphs: 

E =O-�9 0 
+ ... 

(4.26) 

This becomes evident, if the single iteration steps are carried out by use of Eq. (4.26) 
and the diagrammatic Dyson equation (2.12). 

By noting Gi2(t, t') according to Eqs. (2.2) and (2.3), the renormalized graphs 
in the (~-space may be given straightforwardly by the use of the rules of Section 2 
[12]. The expressions for the graphs are more simplified and better illustrated by 
starting out from a different consideration described in the following. 

The characteristic equation 

GO- a I qh) = 0 ; I q~i) = i (4.27) 

is renormalized: 

G -  11 ~k~) = 0 ; I q~k~) = CkZZ Sik~l ~0~). (4.28) 

Ckt being an arbitrary constant for the moment. The new "one-particle" functions 
{q~kZ} are not orthogonal. Choosing 

lEd2 = Pk, (4.29) 

and considering Eqs. (3.9) and (3.5), one obtains the completeness relation 

I~okz) @kzl = 1. (4.30) 
k,l 

Hence, {q)kz} is a set of functions well adapted for the description of the 
renormalizing process G~ Starting out from the skeleton we can describe 
the renormalization by very simple rules: 
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Only internal indices are transformed and following transformation properties 
hold: 

~ke {occ}, l=0 ,  - 1 ,  - 2 , . . .  
k e {occ}-+(k, l)= I.k r {occ}, l =  - 1 ,  - 2  . . . .  

{kke {occ}, l =  l , 2 , 3 ,  ... 
k r {occ} --,(k, 1) = r {occ}, l = O, 1 . . . .  

gk, k ~ {occ}, ~ -Ikz (4.31) 
~k, k r {occ} ,  ~ - & z  

V.,k: = Qp.(1) (&(2)l V(1,2) 1 q)k(t) ~0,(2)) -+ (~G,(1)qh.(2)l V(1,2) I ~ok,.,(1) (p:r.. (2)) 

1/2 
= (P.,P.'Pkr, P:r")  ZSi . ,S i , rS .kr ,  Sq:r,, Vu,q =- V, tk: 

1l'1"1"' 

The self-energy part given in Eq. (4.26) can be directly expressed: 

zi; = Z (G,~ - G~) 
a 11 1l 

(G,:- G':O" G',: (Kj,~:- G':,) G'~: 
-~- Z l l " l '  l l ' l "  l l " l '  _~_ E l l ' l '  l l ' l "  l l " l '  

o, o9 - Ij, z + Az r  + Akr, ,,~ co -- A j, l + let, + Ikr, 
(4.32) 

The sets of indices a, al, ae are to be taken from Eq. (4.31), As the self-consistent 
calculation of Eq. (4.32) is numerically too lengthy, it cannot be carried out 
without additional simplifications. By use of a finite number of unoccupied 
orbitals the sets of indices go up with the number of iteration steps. If the one-pole 
approximation is well satisfied (Section 3), we may write 

S!2),~ ~, Pi'PkP:(Vu'a:- VU':k) Vj;'k: (4.33)  
U k,S<o~} CO -- A j, + I k + I s 

j'r 

+ P~,Pd':(v,,~s- Kj,sO G"~s 
k,Sr 0.) -- Ij, + A k + A s 

j '  e {occ} 

Ps being the pole strength of a main pole. The introduction of the one-pole ap- 
proximation for the graph of first order yields the simple relation 

Vik ~jk] {Pk -1} 
J " ' ~ "  / ' " -~J  k e .(occ~- 

(4.34) 

The numerical evaluation of this relation leads to small differences between big 
numbers. In order to get rid of this inaccurateness all constant 9raphs o f  third 



258 L.S. Cederbaum 

order are to be calculated explicitly. Nevertheless, an interesting conclusion can be 
deduced from Eq. (4.34): the contribution of these graphs in the one-pole ap- 
proximation is negativ for i=j .  

For the example of nitrogen the self-consistent calculation with the self-energy 
part given in Eq. (4.33) only slightly improves the results. The final results of the 
present perturbation theory for the VIPs of N 2 a r e  reported in Table 2. 

7. Summary 

The method of the Green's functions provides a new approach to the calcula- 
tion of ionization potentials and electron affinities. Moreover, it makes it possible 
to investigate one-particle properties of the system. An integral equation relating 
the Green's functions with the self-energy part gives us freedom to collect certain 
graphs to infinite order with the help of the perturbation expansion of the self- 
energy part to finite order. The problem to evaluate the Green's functions has 
hence been reduced to an investigation of the graphs of the self-energy part. 

Expanding the self-energy part to the first order of perturbation theory yields 
Koopmans' theorem. Already in the second order of the perturbation expansion 
additional poles of the Green's functions are obtained, which cannot be explained 
by Koopmans' theorem. These ionization potentials correspond to ion states the 
expansion of which in terms of electron configurations contains mainly such 
configurations which differ by more than one orbital from the configuration 
describing the ground state of the initial molecule in the one-particle picture. 
VIPs of this type and VIPs in their energy region are not considered here, but 
have been investigated and calculated elsewhere [12]. Here, only these poles of 
the Green's functions are investigated which are situated far from the poles of the 
sdf-energy part. 

In order to find these poles, first of all the second order of the self-energy part 
has been taken into account [10-12]. The numerical results, however, prove that 
the second order is far from being able to reproduce the experimental results. By 
going over to the third order the results were improved, but then it was evident that 
it is useless to evaluate only a finite number of orders. 

Theoretical considerations and numerical calculations revealed that it is 
necessary to introduce an effective interaction as well as renormalized particle- and 
hole-lines in order to estimate the contributions of the graphs of higher orders. 

Applications: As mentioned above, the theory has been applied to closed-shell 
molecules successfully [11, 12, 15]. For open-shell systems the theory may be 
applied as well, but the question, if the approximations, used here, are reasonable, 
has still to be investigated. 

One of the main advantages of this perturbation treatment, compared with the 
calculation of the total energies of the corresponding states, is that only a small 
correction term has to be calculated and therefore less accurate wavefunctions are 
sufficient to obtain satisfactory results. It is already shown that in most cases 
reasonable values for Koopmans' defect can be calculated even with semiempirical 
CNDO-wavefunctions [23, 25]. 
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Appendix A 

For some examples the antigraph relation A3 ~ - A  5 is not as well satisfied 
as the other relations in Eq. (4.11). In case the contribution of A 3 + A 5 is consider- 
able, m-independent graphs have to be taken into account for the calculation of 

The estimation of these graphs may be performed analogously to the evaluation 
of the renormalized graph of second order. 
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